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ABSTRACT

Among creationists and intelligent design theorists, there is much interest in developing a theory of biological design. Evo-
lutionary scientists have made much progress in this area by assuming living things are designed for efficiency, despite the
obvious logical incongruity in their reasoning. This area of research is closely connected to the field of allometry, the study of
how different parts of an organism grow or scale in relation to the size of the organism as a whole. The allometric metabolic
scaling theory of physicist Geoffrey West and biologists Brian Enquist and John Brown (WBE theory) assumes living things
are constructed to efficiently deliver nutrients to their constituent cells. It uses this assumption to successfully predict features
of avian and mammalian circulatory and respiratory systems. Moreover, their ontogenetic extension of the theory provides a
theoretical justification for the sigmoid mass-versus-age growth curves exhibited by many living creatures. It also provides a
general mathematical expression for an organism’s age at maturity. Numerous empirical studies have demonstrated a positive
correlation between ages at maturity (first reproduction and/or skeletal maturity) and total lifespan: the higher the age at matu-
rity, the longer an organism’s lifespan. This link to empirical observations may ultimately enable the WBE theory (or one like
it) to help explain the large sizes of many pre-Flood creatures, as well as the extreme longevity of the pre-Flood and immediate
post-Flood patriarchs. Indeed, fossil data and paleo-ontogenetic growth curves, already published in the mainstream evolution-
ary literature, provide at least five lines of possible evidence that some animals were experiencing much greater longevity in
the pre-Flood and immediate post-Flood worlds, just as humans were. Because of the potential significance of this information
to the creation community, this paper also discusses these lines of evidence, while recognizing their preliminary nature and the
need for further research before making a strong claim in this regard.
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I. INTRODUCTION organisms possess these traits in abundance? They claim that highly
engineered qualities like efficiency, optimization, robustness, etc.
that typically characterize non-random living systems were produced
by a random trial-and-error process where (Godfrey-Smith 2015, pp.
18-20) “natural selection has continually honed” organisms. This
“tinkering” process is the “mechanism that is at the very core of any
living system and that has been refined over millions of years” (Ja-
cob 1977, p. 1165). Clearly, evolutionists deal with the obvious te-
leology demonstrated in optimized features by personifying nature
with a God-like selective agency to “hone” and “refine” a primitive
arrangement of molecules into a complicated, optimized system. But
this leaves one wondering, how does this faith-based mantra pervad-
ing the evolutionary literature about nature “honing” and “refining”

Creationists have long maintained, in agreement with Scripture (Ro-
mans 1:20), that evidence of design in living things is overwhelming,
and increased understanding of biological systems will strengthen
that argument. Within the creationist and intelligent design commu-
nities, there is increased interest in applying engineering principles
to the understanding of living things (Guliuzza 2017, Miller 2022).
Because engineers attempt to maximize certain product features (du-
rability, efficiency, etc.) while minimizing others (cost of production,
amount of material used, etc.), one would expect living things, if
designed, to show evidence of intentionally optimized features. Al-
though evolutionary biologists acknowledge that living things seem

well-designed, they refuse to acknowledge an intelligent Designer.
Dawkins (1986) essentially argues that the appearance of design is
an illusion, and Ayala (2007) states that Darwin’s greatest discovery
was explaining design without a Designer.

How then do evolutionists account for the origin of optimized fea-
tures that in any realm other than evolutionary biology would rea-
sonably be understood as a product of engineering, especially since

organisms differ in its metaphysical makeup from another scientist’s
explanation that biological optimization is the product of an intelli-
gent Creator?

Despite this obvious logical inconsistency in their position, evolution-
ary biologists have long recognized that biological characteristics are,
in some sense, optimal, and they have devised mechanistic theories to
explain this optimization from basic physical principles. Ideally, such
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optimization theories would be generally applicable, even over the
enormous size range exhibited by living things (Figure 1).

II. ALLOMETRY AND ITS IMPORTANCE TO CRE-
ATION RESEARCHERS

A. Overview

Biophysical optimization is closely linked to allometry, the study of
how biological characteristics vary with size in relation to the size
of the organism as a whole. As an organism grows, different body
parts may grow at different rates. Allometry involves the study of
body part sizes as well as temporal characteristics such as heart rate
and life span. Allometric relationships are usually expressed in the
mathematical form

¥ =Xt (1

where Y is some biological characteristic, X is some body measure-
ment (total body mass, limb length, etc.), Y is a normalization con-
stant, and 4 is an exponent, often some multiple of %. The fact that
integer multiples of %4 appear so often in allometric equations has
been a long-standing puzzle (Brown et al. 2000). Linear graphs are
often used to express allometric relationships, since a power-law
function plots as a straight line on a log-log graph.

There is a long history of allometric studies going back at least as far
as Galileo Galilei, who noted that increasing the linear dimensions of
an object by a factor n will cause the object’s surface area to become
n? times larger, but its volume to become #n* times larger (Galilei
1638). Leonardo da Vinci (Minamino and Tateno 2014) observed
that the cross sectional area of a tree below a branch point is equal
to the sums of the cross-sectional areas above that branch point. A.-
G. Greenhill (1881) published a short derivation of the maximum
height to which a tree of given proportions could grow without buck-
ling under its own weight. In the 20" century, mathematical biologist
D’ Arcy Thompson published his book On Growth and Form (1917),
which used basic mathematics to describe the shapes and growth of
living things. Evolutionary geneticist J. B. S. Haldane (1927) ob-
served that physical constraints placed limits on the sizes of organ-

isms. The term allometry was coined in 1936 in a joint paper by Ju-
lian Huxley and Georges Teissier (1936), based upon Huxley’s work
in studying growth rates of fiddler crabs (Huxley 1924).

Allometry is of interest to creationists for several reasons. Allometric
relationships are often used to estimate the sizes of extinct creatures,
especially when an entire skeleton is unavailable (Seebacher 2001).
Also, creationists have long suggested that unusual anatomical fea-
tures of ancient humans may somehow be related to extreme lon-
gevity. Cuozzo (1998a) suggested that allometric changes in cranio-
facial features of people who have lived in excess of one hundred
years could be responsible for the heavy brow ridges and lower facial
heights seen in Neanderthal skulls. A possible problem with this ex-
planation is that a few extant humans have very thick brow ridg-
es, even at younger ages (Rupe and Sanford 2017, Tomkins 2019).
Line (2013) suggested that ancient humans may have had robust,
thick bones as a necessary engineering constraint for great longev-
ity, rather than the robustness being the result of longevity per se.
The robustness in the bones of even Neanderthal children and ado-
lescents (Lubenow 2004) would seem to be consistent with Line’s
suggestion. Since a discussion of these differences in the skeletons
of ancient humans falls within the domain of allometry, it is worth-
while for creationist paleontologists to be familiar with the subject,
especially since evolutionary scientists could misinterpret allometric
differences between extinct and extant forms as degrees of evolu-
tionary development between those forms. Finally, it is possible to
mathematically derive allometric relationships by assuming that the
engineering principles of optimization and efficiency will be charac-
teristics of living things, especially with regard to energy consump-
tion. Such relationships are prima facie evidence for the design of
living things.

B. Kleiber’s Law

Agricultural scientists Max Kleiber and Samuel Brody independently
obtained an important empirical allometric relationship. They con-
cluded in Kleiber (1932, 1947, 1961), Brody et al. (1932), and Brody
(1945) that for warm-blooded animals like birds or domesticated cat-
tle, the animal’s basal metabolic rate B and body mass M are related by

Figure 1. (a) Humpback whales typically have masses of about 30,000 kilograms, and (b) ants have masses of just a few milligrams. Are there fundamental
biological principles that are generally valid, even over such an enormous size range?
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3
B = ByMs, o)

where B, is a normalization constant. Basal metabolic rate is the rate
at which an organism expends energy, while in a resting state, in or-
der to support basic life functions such as tissue maintenance. For ec-
tothermic (cold-blooded) animals, basal metabolic rate is sometimes
referred to as standard metabolic rate, or SMR (Auer et al. 2014).
Kleiber and Brody’s result was counter to the long-held “convention-
al wisdom”, as many biologists were expecting the exponent in Eq.
(2) to be %. Their reasoning was that endothermic (warm-blooded)
animals must radiate body heat sufficiently quickly to avoid over-
heating. Since heat is radiated away from a body through its surface,
biologists assumed this rate of heat dissipation was proportional to
surface area. Surface area is proportional to the square of a linear
dimension. And, as mass is proportional to volume, or the cube of the
linear dimension, they expected metabolic rate to be proportional to
mass raised to the %5 power.

Although Kleiber’s Law was originally obtained for just mammals
and birds, many consider it more widely applicable, to cold-blooded
organisms, trees, unicellular organisms, and even molecular process-
es within the cell. If this is true, Kleiber’s Law accounts for a range
of masses that varies by 27 orders of magnitude!

Over time, numerous empirical relationships were revealed in addition
to Kleiber’s Law. But these lacked an overarching theoretical frame-
work to explain the observations. Plant biologist Karl Niklas (2004, p.
872) explains why such a theoretical framework is so important:

If certain trends are size-dependent and ‘invariant’ with re-
gard to phyletic affinity or habitat, they draw sharp attention
to the existence of properties that are deeply rooted in all, or
at least most living things. Identifying these properties us-
ing a first principles approach, therefore, has become some-
thing of a Holy Grail in biological allometry because any
successful theory would unify as many diverse phenomena
in biology as Einstein’s general theory of relativity has for
physics. It is understandable, therefore, that numerous at-
tempts have been made to provide an all-inclusive, unifying
theory for broad interspecific trends. However, most have
not held up against well-reasoned criticism or withstood
empirical tests.

Hence, allometry is of great possible interest to biologists, both cre-
ationist and evolutionist.

III. THE WEST, ENQUIST, AND BROWN (WBE) ALLO-
METRIC THEORY

A. Overview

Physicist Geoffrey West and biologists Brian Enquist and James
Brown (West et al. 1997) have published a theoretical justification
for many of the observed allometric scaling laws, including Kleiber’s
Law. They then explained their metabolic scaling theory (MST) (Tre-
dennick et al. 2013), in greater detail in subsequent papers (Brown
et al. 2000; West et al. 2000). They also extended it to include allo-
metric patterns in angiosperm trees (Enquist et al. 2000), as well as
the ontogenetic growth of an organism over the course of its lifespan

(West et al. 2001). They think the model also has ecological applica-
tions, and they provide a heuristic explanation for the fact that tree
population density is inversely proportional to individual body mass
raised to the % power (Enquist and Niklas 2001; West and Brown
2005). With the exception of a very short book review (Hebert 2022),
these developments have gone virtually unnoticed in the creation lit-
erature. The following discussion is an overview of the theory, its
main assumptions, and its predictions. Detailed derivations of some
of the theory’s key features are provided in the appendices.

WBE modelled an organism’s fluid distribution network as a hierar-
chical branching network (Fig. 2) of N+ 1 levels of interconnected
cylindrical pipes. For animals, particularly mammals and birds, the
highest level of the network, denoted by k = 0, is a single pipe, such
as the aorta within the human cardiovascular system. Note that this
model only includes arteries; it does not attempt to take into account
the venous network. This single pipe branches into a number of
smaller pipes in the k = 1 level and subsequent levels. Let N, denote
the number of pipes within the kth level of the network. Each pipe in
the kth level will diverge into two or more pipes which are part of the
k + 1 level. The number of new pipes at each branching point is the
“branching ratio”, denoted by n. If we assume the branching ratio 7 is
a constant, say n =2 or n = 3, then it follows that the number of pipes
in each level of the network is N, = n* (Fig. 2). Because the network
is assumed to be in steady state, and because an incompressible fluid
cannot “pile up” at network junctions, the rate of fluid flow in the
single pipe corresponding to k = 0 must equal the total fluid flow in
each level of the network:

Qo = NiQx = n*Qx (3)

Eq. (3) must hold for all values of k in the network, including k = N.
Within each level, each pipe has a length [, and radius r, (Fig. 3).
Fluid within each pipe is driven by a pressure gradient 4p,. This pres-
sure gradient can in principle be provided by a pulsatile pump, as in
the case of the mammalian cardiovascular system, or it could be an
osmotic vapor pressure gradient, as in the case of a vascular plant.

Branching Ratio
n=2

il

k= 0 1 2 3 4...
N,=2K 1 2 4 8 16...

Figure 2. Schematic showing the relationships between levels and branches
within the West, Enquist, and Brown (WBE) hierarchical nutrient supply
network.
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Figure 3. Relationships between vessel radii and lengths in two adjacent levels of the network.

The model has three main assumptions:

Within the k = N level of the network, the pipe sizes are “size invari-
ant.” In other words, the length [, and radius 7, of the very smallest
pipes (e.g., capillaries in mammals or birds) do not depend on the
mass M of the organism. These characteristic sizes are determined by
basic physical principles and limitations, not by the overall size spe-
cifics of the organism itself. Capillaries in different creatures should
be the same size, regardless of differences in their masses: a capillary
in a dinosaur should be the same size as a capillary in a mouse.

Organisms minimize the energy needed to transport materials through
the network. This is prima facie evidence that organisms were intelli-
gently engineered, although evolutionists attribute this optimization
to evolution and natural selection (Brown et al. 2000). However, the
WBE model itself makes no evolution-based assumptions. If not for
the perfunctory (and apparently obligatory!) assertion that such op-
timization is achieved by natural selection, the WBE theory could
easily be viewed as a design-based theory.

The hierarchical branching network is “volume-filling” in order to
ensure that nutrients are supplied to the entire organism’s volume.
Because this requirement is often poorly explained in the technical
literature, I elaborate on it below.

B. Volume-filling

One can imagine that each terminal pipe (capillary) in the network
provides nutrients to a group of cells having a “service volume” v,.
Each service volume may be thought of as a biological “black box”.
We do not necessarily know the precise shape of each service volume.
However, because these nutrient-carrying vessels are narrow, we know

that the radius of each vessel is much smaller than its length. It is
therefore reasonable to assume that v, o< [7 (Fig. 4). In other words,
the service volume is proportional to the length of the capillary which
supplies nutrients to it. Because the network must supply nutrients to
the organism’s entire volume ¥, the organism’s total volume V must
equal the sum of the N, service volumes (Fig. 5a):

V = Nyvy & Nyl 4)

Note that the number of service volumes N, is also equal to the num-
ber of capillaries. However, what is counted as a service volume is
somewhat arbitrary. One could, without loss of generality, treat the
capillaries themselves as belonging to the service volumes (Fig. 5b).
In that case, the service volumes are a little larger. Their volumes are
proportional to, not the cube of the pipe lengths in level N, but to the
cube of the pipe lengths in level N — 1. But the number of service
volumes has now decreased to N, _, rather than N,. However, the
organism’s entire volume must still be supplied with nutrients:

V = Ny_1Vn-1 & Ny_1 1§ )

West et al. implicitly assume that the proportionality constant is
the same in both cases, although they acknowledged that this “vol-
ume-filling” assumption breaks down somewhat for small values of
k or N (West et al. 2000). Ignoring this complication, we have for
every level (every value of k) within the network:

V o Nl o Nieyq 13 4q (6)
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3
r, <1, - vy o< ly

Figure 4. Because the radius of a terminal branch r, within the network (i.c., a capillary in the mammalian cardiovascular system) is much smaller than its
length [, , it is reasonable to assume that the “service volume” v, of biological material supplied by each terminal branch is proportional to L.

Ny = Number of Service Volumes
% = Total Body Volume v

Ny_1 = Number of Service Volumes
= Total Body Volume

Figure 5. An organism contains N, service volumes, each with individual volume v, « [5. (a) Because an organism’s entire volume must be supplied with
nutrients, V= N,v,. (b) But one may treat the terminal branches themselves as being part of each service volume. In that case, there are only N, _, ser-
vice volumes, each with a volume proportional to [y_;. Because the organism’s entire volume V must still be supplied we have V= N, v_ . In general,

N-1"N-1"
V=N, x N I3 forall k. Note: the radius of v, and [, are not to scale.

Inspection of Fig. 2 shows that, in addition to being the number of
new pipes at each junction node (or branching point), n is also the
ratio of the number of pipes in level k + 1 compared to the number
of pipes in level k:

_ Ngta
n =g ™)

Egs. (6) and (7) gives us the “volume filling” or “space filling” con-
straint that must be met by the network:

1
3 1
) <o {&J e (®)

Because the branching ratio n is assumed to be the same for all val-
ues of k, y, equals y, a constant.

C. Minimizing power losses in the cardiovascular system

Biologist Cecil D. Murray (1926) suggested that the human cardio-
vascular system was constructed in such a way as to minimize the
work required to oxygenate the body, and he provided simple cal-
culations to demonstrate that construction. J. R. Womersley (1955)
published a mathematical solution for velocity, flow rate, and vis-
cous drag in arteries and noted a phase-lag between pressure gradient
and flow, similar to the voltage-current phase lag that can exist in an
alternating electrical circuit. Womersley did not explicitly state all
the details of his derivation, but Shirazi (1972) “fills in” the details.
Womersley’s solutions strongly suggest that the cardiovascular sys-
tem is designed to minimize energy losses as oxygenated blood is
transported throughout the body.

Within a mammalian or avian cardiovascular system, energy losses
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arise from two sources, (1) friction between blood and the vessel
wall and (2) impedance losses due to reflection of pulsatile waves at
a branch junction. In narrow diameter blood vessels, the blood ves-
sel’s high surface area to volume ratio implies that a large fraction of
the fluid will be in contact with the vessel walls. Hence, dissipation
due to friction is most important in narrow vessels. One may use the
method of Lagrange multipliers (Thomas and Finney 1988) to show
that power losses in narrow blood vessels are minimized when

po=p=tian ©)

"

In this case, total cross-sectional area of the vessels does not remain
constant, but increases as k increases. Details of the derivation are
provided in Appendix A.

In contrast, the smaller surface area to volume ratio found in wide
blood vessels implies that friction is not the most important source
of dissipation for wide blood vessels. Rather, dissipation due to re-
flection at node junctions is the dominant source of power loss. This
power loss may be completely eliminated via the process of imped-
ance matching. Doing so (details are in Appendix B) yields the result

ﬂkzﬂz‘r’;ﬁzn 2
k

(10)

For wide-diameter blood vessels (lower values of k), cross-sectional
area of the network remains constant. This is consistent with obser-
vations that the cross-sectional area of the vascular bed stays con-
stant in both humans and dogs until the vessels reach a transitional
size, at which point the area of the bed begins to increase (Caro et al.
2012, p. 244).

In the supplementary material to their paper, Savage et al. (2008)
provide the outline for the more general case of rigid blood vessels
of any radius. Although this derivation neglects blood vessel elastic-
ity, it still gives the exact result for narrow elastic blood vessels and
results that are very close to the exact answer for wide elastic blood
vessels. Hence, their simplified derivation illustrates the important
features of the much more complicated exact solution (Womersley
1955, Shirazi 1972) for elastic blood vessels. The general solution
provides radius scaling given by Eq. (9) for very narrow blood ves-
sels, and radius scaling given by Eq. (10) for very wide blood ves-
sels.

This optimization of the circulatory system is so obvious that sci-
entists cannot help but use words like “design” when describing the
circulatory system. Li (2000, p. 113) states, “The optimal design fea-
tures of the mammalian cardiovascular system have been marveled
at by us Homo sapiens for many decades.” Li goes on to say (2000,
pp. 125-126)

Invariant pulse transmission features are embedded in the
similar pulse pressure and flow waveforms observed at cor-
responding anatomical sites. The precision of natural de-
sign is even more amazing at vascular branching junctions,
where branching vessel impedances are practically matched
to ensure pulse wave transmission at utmost efficiency with
minimal wave reflection and energy losses.
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That similar cardiovascular transmission features are observed at
“corresponding anatomical sites” for different animals seems too
unlikely a coincidence to attribute to “convergent evolution”. In the
introduction to his detailed derivation of Womersley’s (1955) results,
Shirazi (1972, p. 2) states

Womersley’s work forms an important link in the continu-
ing chain of understanding [of the cardiovascular system].
We have chosen to present his version not because it is the
most sophisticated work in this area but because within its
limitations it is a well-developed treatment of several as-
pects of the arterial problem, and suggests a rational ba-
sis_for many of the peculiar characteristics observed in the
mammalian cardiovascular system. [emphasis mine]

Yet Brown et al. (2000, p. 11) instead attribute such features to nat-
ural selection: “Natural selection for efficient design of such distri-
bution and support . .. has resulted in the evolution of networks with
self-similar, hierarchically scaled architectures.” Yet, isn’t it reason-
able to ask if the phrase “natural selection for” doesn’t “smuggle in”
the same intelligent intentionality to presumed naturalistic explana-
tions that is attributed to an intelligent Designer by other scientists?
After all, “selection” is always rooted in intelligence and volition,
while the word “for” in this context indicates purposeful intentions
with the definitive target of “efficient design.” If evolutionary biol-
ogists who proceed from an interpretive framework of naturalism
have not really provided a non-intelligent explanation, but instead
injected a substitute intelligence cloaked in selectionist jargon, then
isn’t creation by an intelligent Engineer a more plausible explana-
tion? After all, design by an intelligent Engineer explains 1) opti-
mized features, that 2) can be reduced to mathematical formulas, and
3) operate by the same engineering principles as human-engineered
fluid-transport systems.

D. Deriving Kleiber’s Law

The results of the previous two sections suggest that the way to min-
imize energy losses due to both friction and reflection is to apply the
volume-filling constraint of Eq. (8) for all values of k, the constraint
of Eq. (9) for narrow blood vessels (higher k values) and the con-
straint of Eq. (10) for wide blood vessels (smaller values). This may
be done with a “transitional” value of k = k, as illustrated in Fig. 6.

Savage et al. (2008) explain more clearly the derivation of Kleiber’s
Law, some details of which are omitted in West et al. (2000). A key
step in this derivation is the realization that blood volume V, is pro-
portional to the organism’s mass M. We follow their derivation in
Appendix C. They obtain

M = A B3 (1+ AlB%) (1)

Here A, and A, are mass-independent constants. Strictly speaking,
the relationship above between body mass M and basal metabol-
ic rate B only becomes Kleiber’s Law in the limit of infinite mass
(Savage et al. 2008). Hence, deviations from Kleiber’s Law are more
likely for smaller organisms, and this may help to explain some of
the contrary results mentioned in Section IV.

WBE demonstrated quite a few allometric relationships for char-
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Figure 6. Higher cardiovascular efficiency is obtained by using the “ar-
ea-preserving” n™72 radius- scaling for wide blood vessels (smaller values
of k), and the n B radius-scaling for thin blood vessels (higher values of
k). After Figure 8 in West, Brown, and Enquist (2000).

acteristics of the cardiovascular and respiratory systems, some of
which have already been confirmed experimentally (Tables 1 and 2).

E. Angiosperm trees

An extension of their theory for broad-leaved angiosperm trees also
makes some successful predictions, perhaps most notably that max-
imum possible tree heights should be on the order of 100 meters.
This is in agreement with observations: the world’s tallest tree is a

coastal redwood (Sequoia sempervirens) named “Hyperion” with a
height of 116 meters (Enking 2022). For purposes of brevity, we do
not discuss it here. However, interested readers may consult Enquist
et al. (2000) for details.

F. WBE ontogenetic growth theory

West et al. (2001) also developed a general model for the ontogenetic
growth of an organism, i.e., growth over the course of its lifetime.
Their model partitions metabolic energy use between the energy
needed to maintain existing tissue and the energy needed to produce
new tissue:

dn,
B=3% [NCBC + E¢ dt ] (12)

The total basal metabolic rate B is the sum of the individual meta-
bolic rates of the body’s cells, plus the rate at which energy is used
to form new cells. The summation is over the different tissue types
within the body. For each tissue type, there are N, cells, each having
a cellular metabolic rate of B, and £ is the energy needed to form a
new cell for that particular tissue type. WBE used Eq. (12) to derive
an expression (see Appendix D for details) for an organism’s body
mass m as a function of time:

4

m j% ;aMi%z (13)
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Table 1. WBE predicted values of A in cardiovascular allometric relationships Y= Y, M*, as well as experimentally-determined values (with references).

Variable Symbol Predicted Exp. Empirical Exp. Reference
Aorta Radius T, 3/8=0.375 0.36,0.41 Holt et al., Schmidt-Nielsen
Pressure in Aorta Ap, 0 =0.00 0.032
Blood Velocity in Aorta u, 0=10.00 0.07
Blood Volume Vb 1=1.00 0.99, 1.00, 1.02 Gtnther, Prothero, Stahl
Circulation Time T 1/4=0.25 0.25 Schmidt-Nielsen (calculated)
Circulation Distance l 1/4=0.25 ND
Cardiac Stroke Volume 1=1.00 1.04-1.05 Giinther
Cardiac Frequency -1/4=-0.25 —0.25,-0.26 Stahl, Giinther
Cardiac Output E 3/4=0.75 0.81,0.78-0.79 Stahl, Giinther
Number of Capillaries N 3/4=0.75 ND
Supply Radius of Cells 1/12 =0.083 ND
Radius of Krogh Cylinder 1/8 =0.125 ND
Density of Capillaries —-1/12 =-0.083 —0.095
Oxygen Affinity of Blood P, —-1/12 =-0.083 —0.089
Total Peripheral Resistance A —-3/4=-0.75 -0.76 Giinther
Womersley Number a 1/4=0.25 0.25
Metabolic Rate (O, Uptake) B 3/4=0.75 0.76 Stahl
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Table 2. WBE predicted values of A in respiratory allometric relationships ¥ = ¥, M, as well as experimentally-determined values (with references).

Variable Symbol Predicted Exp. Empirical Exp. Reference
Lung Volume 1=1.00 1.05 Weibel
Respiratory Frequency -1/4 =-0.25 —0.26, —0.28 Stahl, Tenney & Bartlett
Volume Flow to Lung 3/4=0.75 0.80 Stahl
Interpleural Pressure 0=0.00 0.004 Gtinther
Trachea Diameter 3/8=0.0.375 0.39 Tenney & Bartlett
Air Velocity in Trachea 0=0.00 0.02-0.04 Calder
Tidal Volume 1=1.00 1.04 Stahl
Power Dissipated 3/4=0.75 0.78 Stahl
Number of Alveoli N, 3/4=0.75 ND
Volume of Alveolus v, 1/4=0.25 ND
Radius of Alveolus T, 1/12 =0.083
Surface Area of Alveolus A, 1/6 = 0.083 0.095 Gehr et al.
Surface Area of Lung A, 11/12=0.92
Oxygen Diffusing Capacity 1=1.00 0.96, 0.99, 1.18 Weibel, Gehr et al., Stahl
Total Airway Resistance —-3/4=-0.75 —0.70 Stahl
O, Consumption Rate 3/4=0.75 0.76,0.72 Stahl, Weibel

Here M s the organism’s final mass at maturity, m, is the organism’s
mass at birth, and a is a taxon-specific constant.

Their model results in a sigmoid “universal growth curve” (Fig. 7)
for fraction of adult body mass as a function of time since birth. It
does a good job of predicting the shape of growth curves for guinea
pigs, guppies, hens, and cattle, as well as general sizes for nine other
examples of fish, mammals and birds (West et al. 2001). This model,
or one similar to it, might eventually help creationists explain the
extreme longevity of pre-Flood humans, as discussed in Section VC.

IV. WBE THEORY: CRITICISMS AND ALTERNATIVES
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Figure 7. The sigmoid growth curve derived by WBE, showing fraction of
adult body mass as a function of (normalized) time t since birth.

The WBE theory is not without criticism. Glazier (2006) argues that
Kleiber’s Law, which the WBE theory explains, is not truly univer-
sal. Dodds et al. (2001) and White and Seymour (2003, 2005) ar-
gue that statistical evidence is consistent with A = %4, rather than %.
WBE have defended their research against these criticisms (Brown
et al. 2005; West and Brown 2005). West and Brown (2005) point
out that Calder (1984), McMahon and Bonner (1983), Schmidt-Niel-
sen (1986), and Peters (1993) all independently concluded that quar-
ter-power scaling in biological systems was both real and ubiquitous.

Koztowski and Konarzewski (2004, 2005) and Etienne et al. (2006)
have criticized the underlying logic of the WBE model. Hulbert
(2014) argues that Kleiber’s law is an “empirical approximation”,
not a rule or law. Price et al. (2011), Bentley et al. (2013), Tredennick
et al. (2013) and Price et al. (2022), have noted observations that
contradict or potentially contradict the theory, as has Niklas (1995,
1997). Nevertheless, Niklas thinks WBE are “on the right track”,
so to speak, and he goes so far as to say that, although much work
remains to be done, a unifying allometric theory regarding plant bi-
ology is “near at hand” (2004, p. 871).

Nor is the WBE theory the only metabolic scaling theory. For in-
stance, Price et al. (2022), have produced an alternate theory for
land plants, one that utilizes velocity constraints and conservation
of volume flow rate throughout the organism. Escala (2019) used
dimensional analysis (McMahon and Bonner 1983) to obtain an an-
alogue to Kleiber’s Law in which the rate of oxygen consumption is
proportional to the product of body mass, some characteristic body
frequency (such as respiration or heart rate), and the mass of oxygen
utilized per unit of body mass. Unlike the WBE theory, his result
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does not depend upon the units used to measure basal metabolic rate
or mass, as should indeed be the case for a true physical law. In Es-
cala (2022) he improved upon his result by including temperature as
a variable. Escala’s work may be of particular interest to creationists
for reasons explained in Section VB.

V.AVENUES FOR FUTURE CREATIONIST RESEARCH

Metabolic scaling theories suggest real possibilities for future cre-
ation research. Obviously, creationist biologists and biophysicists
could work on improving such theories by incorporating still more
design constraints in biological models. However, this may make the
mathematics of such models intractable, at least for the foreseeable
future. Ontogenetic scaling theories, however, offer much more prac-
tical opportunities.

A. Ontogenetic growth theory and giantism

Allometric scaling may be helpful in explaining the phenomenon of
giantism, which has long been of interest to creationists. Giantism
is likely caused by multiple factors. Biologists have long noted the
“island rule” that small vertebrates living on islands are often larger
than their mainland counterparts, while larger vertebrates shrink in
size when they colonize islands (Lomolino 2005). This insular giant-
ism/dwarfism is often accompanied by longer life spans and smaller
reproductive outputs (Baxter-Gilbert et al. 2020).

Reduced reproductive output in island populations makes sense as
an innate design feature, as this could be a means that the Lord uses
to prevent overpopulation in island settings. If so, insular giantism
and dwarfism might be adaptive design features, as well. It is worth
noting in passing that evolutionists worried about “overpopula-
tion” seem to fail to consider the possibility that living things might
self-adjust reproductive rates to adjust to higher or lower population
densities. The ability of organisms to modulate their sizes and re-
productive rates in response to changing environmental conditions
could be another example of the ability of organisms to self-adjust
as they continuously track their environments (Guliuzza and Gaskill
2018).

Likewise, Ice Age megafauna (birds and mammals) may have grown
larger to minimize heat losses in cold environments, per “Bergmann’s
rule” (Bergmann 1847). It is also possible that at least some animals
were still experiencing relatively long lifespans in the immediate
post-Flood world. Hence, longer lifespans might have contributed to
larger sizes for some of these animals.

As discussed above, West et al. (2001) have developed a general
model for the growth of an organism over the course of its lifetime,
and it, combined with biblical considerations, may be helpful in ex-
plaining the large sizes of many animals in the pre-Flood world.

Before continuing this discussion, we define the terms determinate
growth and indeterminate growth. Organisms with determinate
growth stop growing at maturity, whereas organisms with indeter-
minate growth do not. Of course, growth is really only apparently
indeterminate, as there are physical limits to how big an organism
can become. For example, J. B. S. Haldane (1927) used Galileo’s
area-volume law to observe that a giant ten times the height of a
normal man would be physiologically impossible, since increasing

a man’s height by a factor of ten would make him a thousand times
heavier, but the strength of his bones and muscles, being proportional
to their cross-sectional area, would only become one hundred times
stronger. Since a stress ten times greater than that due to body weight
is sufficient to fracture a bone, such a giant would be in danger of
breaking his leg simply by taking a step! Of course, this problem does
not necessarily apply to the giants described in Scripture, with their
much more realistic and physically plausible heights (e.g., I Samuel
17:4). It is also possible that these biblical giants were not precisely
“scaled up” versions of normal-sized humans. At these larger sizes,
allometric factors may have come into play, such as the development
of somewhat thicker bones.

In any case, it would seem that within a creationist paradigm, a//
growth is determinate growth, as God in His wisdom would put lim-
its on the maximum sizes that could be attained by living creatures.
This is especially clear when we consider that there was no death
in the pre-Fall world. Organisms not subject to death simply could
not keep growing without limit, as their sizes would eventually be-
come physically untenable. Hence, God must have placed pre-de-
termined limits on the sizes of living things. So what we observe
as apparently indeterminate growth might simply be the result of
much shorter lifespans than those attained to in the pre-Flood and
immediate post-Flood worlds. Creationists have long noted the large
sizes of many now-extinct animals (Nelson 2017) and have suggest-
ed (Beasley 1990) that longer lifespans allowed pre-Flood creatures
to attain larger sizes at maturity than in today’s world. It may be that
creatures today with (apparently) indeterminate growth simply don’t
live long enough to attain their maximum possible physical sizes.
For instance, sharks and reptiles are generally indeterminate growers
(Hariharan et al. 2016). It is not hard to imagine that the megalodon
may have been a fully mature great white shark of extreme age, and
we discuss evidence for this possibility in Section VC.

In an online pre-print of a paper that has admittedly not yet been
peer-reviewed, Escala (2021) makes predictions about the time for
an organism to reach maturity compared to its maximum possible
lifespan. Hence it may be of interest to creationists attempting to
explain the great longevity of pre-Flood humans. For simplicity, his
predictions, unlike Escala (2022), do not take into account possible
variations in temperature or oxygen consumption, but it might be
possible to take those variations into account in future studies. Both
evolutionists and creationists have long-speculated that higher atmo-
spheric oxygen concentrations may have contributed to past giantism
of some organisms (Dillow 1982; Harrison et. al. 2010, Wieland and
Sarfati 2011). Likewise, creationists (Whitcomb and Morris 1991,
Dillow 1982) have long suspected that average global temperatures
in the pre-Fall world were higher than today, even if the cause of a
warmer climate is unknown. Hence, a more sophisticated version of
Escala’s work might enable creation researchers to at least partially
explain why post-Flood lifespans are so much shorter than pre-Flood
lifespans.

B. Longevity: linking theory to observations

In Genesis 5, the youngest age listed at which a patriarch’s son is
born is 65 (Genesis 5:15, 21). Although some, perhaps many, of
these sons were probably not first-born, it seems unlikely that none
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of them were. And, given the strength of the human sex drive, it also
seems very unlikely that all these patriarchs were choosing to post-
pone marriage thirty or forty years after reaching sexual maturity!
This seems to strongly suggest slower growth and development, as
suggested by Cuozzo (1998b). If the pre-Flood patriarchs did not
reach sexual maturity until roughly 65 years of age, this fits with em-
pirical evidence that age at sexual and/or skeletal maturity positively
correlates with lifespan, i.e., the longer an organism takes to reach
maturity, the longer its lifespan. Studies have demonstrated this to be
true in general for terrestrial vertebrates, including birds and reptiles
(de Magalhées et al. 2007, Ricklefs 2010a), as well as particularly
true for bivalve molluscs (Abele et al. 2008, Ridgeway et al. 2011,
Moss et al. 2016), fish (Genade et al. 2005, Lee, Monaghan, and
Metcalfe 2013), and birds and mammals (Ricklefs 2010b). A good
overview is provided by Marchionni et al. (2020).

There is also evidence (de Magalhdes et al. 2007, Ricklefs 2010a,
Ridgway et al. 2011) that larger body size at maturity is positively
correlated with greater longevity, although there is conflicting evi-
dence in the case of bivalve molluscs: Ridgway et al. (2011) found
a weak but statistically significant correlation, but a larger study by
Moss et al. (2016) did not. For the time being we do not attempt to
explain these general observations, rather we simply accept them as
empirical facts. In general, greater longevity seems to be positively
correlated with greater ages and sizes at maturity. Because the WBE
ontogenetic growth model makes predictions about the time for an
organism to attain its maximum size (Appendix D), it or a similar
theory could shed light on this issue and yield insights into pre-Flood
and immediate post-Flood environmental conditions. With this in
mind, I discuss below five possible lines of evidence for extreme
animal longevity in the pre-Flood and immediate post-Flood worlds.

C. Possible paleo-ontogenetic evidence for extreme animal
longevity

The WBE ontogenetic theory provides a theoretical justification for
why animal age-versus-mass growth curves exhibit an almost-uni-
versal ‘sigmoid’ shape (Fig. 7). Biologists have long-used the sim-
ilar-looking empirical Bertalanffy growth curve (1938) to describe
the linear growth of an organism:

L(t) = L,(1 — e7k(=to)) (14)

Here, L(f) is the length of a major body dimension of the animal,
say height or length. L_is the animal’s body length at maturity. The
parameter k is a measure of how quickly the animal grows, and ¢,
is the (theoretical) age at which the animal has a size of zero. Eq.
(14) indicates a period of rapid juvenile growth followed by a slow-
ing or stopping of growth at adulthood. Although the mathematical
form of Eq. (14) is not identical to that of Eq. (13), this period of
rapid linear growth clearly corresponds to the steeply-sloped portion
of Figure 7, whereas the period of very slow growth corresponds to
Figure 7’s plateau.

The WBE ontogenetic theory does not tell us anything about how
long an animal will live per se. It simply describes how the mass of
the animal varies as a function of time. However, we have already
noted that there is considerable empirical evidence that both higher

age and larger body size at maturity are positively correlated with
greater longevity in extant animals. This is a particularly intriguing
observation in light of the large body sizes of many pre-Flood crea-
tures. We now briefly discuss five possible lines of fossil evidence
(already published in the mainstream evolutionary literature) that an-
imals, as well as humans, were experiencing much greater longevity
than do comparable extant animal forms.

However, before doing so, we need to address possible objections
to such comparisons. In order to determine whether or not living
animal representatives are shorter-lived than their pre-Flood ances-
tors, we need to compare ontological data from both before and after
the Flood. In many cases, it is not possible to perform a true spe-
cies-to-species comparison, as many fossil species are now extinct.
However, the examples below involve comparisons between crea-
tures with similar body structures, even if they have been grouped
in different species or genera. Moreover, it is possible to use a cal-
culated "index of growth performance" (Pauly and Munro 1984) to
compare growth rates between different species, provided the spe-
cies have similar body shapes (Killam et al. 2021). Also, given the
“over-splitting” tendencies of many taxonomists, it is quite likely in
many cases that different but similar species actually belong to the
same Genesis kind. Hence, we should not let this prevent us from
making reasonable comparisons, even if they are not necessarily in-
traspecific.

Such a comparison implicitly assumes that paleontologists are accu-
rately identifying and counting growth bands in shells, bones, and
osteoderms. Or at the very least, it assumes that any systematic er-
ror in counting growth bands in pre-Flood fossils will be the same
as any systematic error in counting growth bands in post-Flood re-
mains. Note that the bands do not even necessarily need to be annual.
As long as growth bands formed in the pre-Flood world represent
the same units of time (years, months, or days) as in the post-Flood
world, it is possible to compare pre- and post-Flood lifespans, even if
we are unsure of the precise units of time that each band represents.
I think we can be reasonably confident in these reconstructions, but I
recognize the need for creationists to study their underlying assump-
tions more deeply before making strong claims in this regard.

1. Larger animal sizes

Many creationists (e.g., Beasley 1990) have long-suspected that the
giant sizes of many extinct fossil forms were linked to greater past
longevity. Earlier in this section I cited, for extant animals, positive
correlations between greater body size at maturity and greater lon-
gevity. If such a correlation held for extinct forms as well, then the
large sizes of these fossil forms may be indirect evidence that they
were long-lived. The particular case of sauropod dinosaurs is dis-
cussed in Section VD.

2. Long-lived and slow-growing bivalve molluscs

Sclerochronology is the counting of growth bands in hard remans
to infer details about an organism’s growth and ontogeny (Moss
et al. 2021). A number of studies suggest that molluscs in the pre-
Flood and immediate post-Flood worlds were experiencing much
greater longevity than their modern-day counterparts. Kirby (2001)
constructed growth curves for Miocene, Pleistocene, and Recent
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Crassostrea oysters. The Miocene shells were obtained from two
different locations in California, the Pleistocene shells from Virginia,
and the Recent shells from North Carolina. All shells were collect-
ed from a relatively narrow latitude band between 34.6° and 36.8°
north latitude. The Miocene oysters apparently had much greater
maximum lifespans and sizes than the Late Pleistocene and Recent
Crassostrea oysters (Figs. 8 and 9). In agreement with Holt (1996),
Baumgardner (Oard 2002), Oard (2013), and Clarey (2019), I am
assuming that, generally speaking, Miocene and Pleistocene strata
are Flood and post-Flood strata, respectively. The dramatic decrease
in maximum oyster lifespan shown in Figure 8 parallels the dramatic
decrease in human lifespan after the Flood described in Genesis 11.

Similar late Cenozoic trends appear in giant clams from the Red Sea
region (Killam et al. 2021), Mercenaria clams from North Caroli-
na and Florida (Palmer et al. 2021), and venerid bivalves from the
Japanese Islands (Sato 1999). These examples are not as dramatic
as those shown in Figures 8 and 9 are are perhaps more easily dis-
missed. Moreover, the pattern is equivocal for chionine bivalves
from the tropical Americas (Roopnarine 1996). These examples are
not as dramatic as those shown in Figures 8 and 9 and are perhaps
more easily dismissed. Moreover, the pattern does not hold for Mer-
cenaria clams from Florida (Palmer et al. 2021).

However, strong evidence for greater mollusc longevity in the pre-
Flood world comes from Seymour Island, Antarctica. A study of 12
Eocene Cucullaea raea shallow-marine clam shells showed “ex-
treme” longevity (Buick and Ivany 2004). Despite the small sample
size and the fact that the sample shells were not exceptional in size
or number of visible bands, all twelve clams were estimated to be at
least 50 years old at time of death, with 6 clams more than 90 years
old, and 5 clams greater than 100 years old! Buick and Ivany (2004,
p. 922) noted, “These are some of the longest-lived clams ever doc-
umented from the modern or ancient world.”

A larger study showed that 11 species of Cretaceous and Paleogene
Seymour Island bivalves were slow-growing and long-lived (Moss
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Figure 8. Maximum lifespan (red dots) for four assemblages of California,
Virginia, and North Carolina Crassostrea oysters all collected between 34.6°
and 36.8° north latitude. The maximum lifespans for the Late Pleistocene
and Recent oysters are dramatically less than the maximum life-spans for the
Miocene oysters. Black dots represent the average age of each assemblage,
and error bars are the standard deviations. The number of fossil specimens in
each assemblage is shown.

etal. 2017, p. 373):

While a number of modern taxa can attain life spans in ex-
cess of 50 years, the modal value of maximum reported life
span for bivalve species today is 3 years (Moss et al. 2016).
The shortest-lived species measured from Seymour Island
reached life spans of at least 22 years. The longevity of bi-
valves in this assemblage, even as established from such a
restricted sample, is impressive.

Moss et al. (2017) noted that different taxonomic groups were
well-represented in their study, as they studied fossil assemblages be-
longing to three different families in three different orders. Moreover,
they noted they were likely underestimating the ages of these bivalve
species due to ring counting difficulties and the relatively small sam-
ple sizes of their specimens. Even so, they concluded (Moss et al.
2017, p. 365) that “all 11 species examined are both slow growing
and long-lived, especially when compared with modern bivalves in
similar temperature settings.”

Temperature is indeed an important factor in these kinds of studies.
Although extant high latitude marine bivalves can live hundreds of
years (Abele et al. 2008), this seems to be a temperature-dependent
phenomenon, possibly due to a dramatic slowdown in metabolism
triggered by extremely cold temperatures. The longevities of these
Seymour Island bivalves are particularly impressive because uni-
formitarians believe the Antarctic Peninsula experienced relatively
warm temperatures during the Cretaceous and Paleogene. And most
creationists would probably agree that global temperatures in the
pre-Flood world were higher than today’s averages. Hence, neither
we nor they can use cold temperatures as an explanation for why
these particular molluscs lived so long. If anything, such warm tem-
peratures should have sped up their metabolisms, decreasing their
longevity. Yet this was not the case.

3. Slowly-maturing birds

Apparently, there is osteo-histological evidence that birds once took
longer to mature than they do today. A detailed discussion of os-
teo-histology is beyond the scope of this paper, but we note in pass-
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Figure 9. Height-versus-age growth curves constructed for the four Cras-
sostrea oyster assemblages whose data are summarized in Figure 8. After
Figure 3B in Kirby (2001).
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ing some observations from evolutionary paleontologists. Chiappe
and Bell (2001, p. 556) state:

Surprisingly, these [histological] data point at significant
differences with respect to living birds. Modern birds usu-
ally hatch and develop full-grown sizes within a year. Yet,
studies of early birds spread across the evolutionary tree
(Archaeopteryx, Confuciusornis, Enantiornithes and others)
reveal that these animals had a protracted period of skeletal
growth, in which growth was punctuated by annual pauses
(phases when skeletal growth slowed down significantly or
virtually stopped).

Padian (2023, p. 252) concurs:

Birds seem to have inherited both high metabolic rates and
high growth rates from their dinosaurian ancestors, but
by the time the living groups of birds appeared, they had
evolved the even-higher rates of growth and metabolism
that are observed today'®. The first birds took several years
of development to reach skeletal maturity", but today’s
birds can do so within a year or less.[emphases mine, foot-
notes in original]

Erickson et al. (2009) note that the “first” birds took longer to ma-
ture than most comparably-sized extant birds and that Archaeopteryx

took longer to mature compared to extant precocial and alticial land
birds.

If pre-Flood birds took longer to mature than extant birds, this could
be evidence they were living longer than birds of today. However,
this pattern may not have held for all ancient birds. According to
Feduccia (2006), the bone histology of Cretaceous ornithurines (‘an-
cient’ birds similar to ‘modern’ birds) is similar to that of modern
birds, without growth rings. This could suggest shorter growth in-
tervals, lacking in such pauses. However, Foth et al. (2021) note that
juvenile avian fossils are rare, and that most paleo-ontogenetic infor-
mation from birds comes from Enantiornithes, which took longer to
reach skeletal maturity than extant birds. O’Connor et al. (2014) note
that “growth in Early Cretaceous birds remains poorly understood.”

4. Slow-growing crocodylians

Erickson and Brochu (1999) counted growth rings in the dorsal os-
teoderms of multiple species of fossil crocodylians and used these
data to construct estimated age-versus-length growth curves (Figure
10). The growth curves for the two unidentified species of Deino-
suchus from Texas and Montana suggest that these representatives
of the ‘terror crocodile’ were particularly slow-growing. If the von
Bertalanffy age-versus-length curve from Eq. (14) is a universal
one, then it seems Deinosuchus would have still been an adolescent
at 40 or 50 years of age. Moreover, because the two Deinosuchus
growth curves have not yet ‘plateaued’ or ‘leveled-off’, it seems that
the maximum sizes of these two particular species (or perhaps single
species) of Deinosuchus could easily have exceeded nine meters. But
whatever their final size, their adult forms clearly would have been
much larger than adult sizes of extant crocodylians (Figure 10). Like-
wise, they took much more time to reach maturity than extant forms.
Both observations are suggestive of great longevity.

The other six crocodylian species apparently did not attain ages or

sizes as great as those of Deinosuchus. Smaller adult size could be an
adaptation to different environments in the pre-Flood world. Howev-
er, it could also be an illusion caused by sampling bias: Could these
growth curves have been constructed from fossil assemblages of
juvenile crocodylians that were separated from larger adults during
the Flood? The Leidyosuchus, Pristichampsus, and Brachychampsa
growth curves “track” fairly well (Figure 10) with that of the extant
American alligator (Alligator mississippiensis), at least for ages less
than 25 years. Thus, these particular crocodylians may or may not
have taken longer to mature. However, the relatively steep slopes of
the “Crocodylus” affinis and Borealosuchus growth curves might im-
ply that these creatures were still ‘adolescents’ at 20-25 years of age.

The giant Sarcosuchus imperator also apparently grew quite slowly.
Although I have yet to find growth curve data for this species, Sereno
et al. (2001) concluded that S. imperator took 50 or 60 years to reach
its maximum adult size. Interestingly, Sereno et al. stated in their
ab-stract that it had a life-span of 50-60 years. However, this
statement is not necessarily correct. Yes, S. imperator apparently
took 50 or 60 years to reach maturity, but it is obvious that time to
maturity is not necessarily equal to life-span. The osteoderm data
give us clues about S. imperator’s time of growth, but they do not
tell us anything about how long it /ived, as least not directly. But its
long maturation period and large adult size (estimated weight of 8
metric tons and length of 11 to 12 meters) could both be indicators
of greater longevity compared to extant crocodylian forms.

5. “Old” adolescent sharks

Two fossil shark vertebrae suggest that pre-Flood sharks took much
longer to grow than extant sharks. By counting presumed annual
growth rings in the fossilized vertebrae of a Ptychodus shark from
Cretaceous strata in Spain, Jambura and Kriwet (2020) inferred that
this Ptychodus shark was 30 years old at time of death. The inferred
growth curve indicated that this shark had not yet reached maturity
despite its “old” age. Jambura was quoted as saying (Anonymous,
2020):

We calculated a size of 4-7 meters and an age of 30 years for
the examined shark. It’s astonishing that this shark was not
yet mature when it died despite its rather old age. ... [T]his
shark doesn’t show any signs of flattenings or inflections
in the growth profile, meaning that it was not mature — a
teenager, if you want. This suggests that these sharks grew
even larger and older.

It’s even more amazing when one realizes that data from a more
complete Ptychodus shark fossil (Shimada et al. 2010) suggests that
full-grown adults could be 10 to 11 meters long!

Shimada et al. (2021) counted growth rings in a Miocene megalodon
vertebrae from Belgium. Their constructed von Bertalanffy growth
curve (Figure 11) implies that Otodus megalodon would take 498
years to reach 95% of its full adult body length of almost 32 meters.
Admittedly, these time and length estimates are probably too high
(see downward-pointing arrow in Figure 11), as they imply anterior
teeth crown heights more than twice the height of any such megal-
odon fossil tooth yet discovered. But even if one completely ignores
this extrapolation, this particular megalodon was already larger than
an extant great white shark at 46 years of age, yet it was apparently
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Figure 10. Length-versus-age growth
curves constructed for multiple species
of fossil crocodylians, after Figure 2a in
Erickson and Brochu (1999), including
two representatives from the genus Dei-
nosuchus. For comparison, the growth
curve of the American alligator (4/liga-
tor mississippiensis) is shown. American
alligator growth curve obtained from a
catch-tag-and-release study (Chabreck
and Joanen, 1979) of thousands of in-
dividuals from Louisiana, USA. Alliga-
tor image credit: Gareth Rasberry, CC
BYSA 3.0 <https://creativecommons.
org/licenses/by-sa/3.0>, via Wikimedia

Commons.

Figure 11. Length-versus-age data (light
blue dots) inferred from Otodus meg-
alodon teeth and vertebrae, as well as
the extrapolated growth curve (dashed
line), after Figure 2a in Shimada (2021).
The specimen from which the vertebrae
data were obtained had not yet matured,
even though it is estimated to have been
46 years old at time of death. The great
white shark growth curve of Wintner and
CIliff (1999) is included for comparison.
Shark image credit: Mostafa Elturkey.

Wikimedia Commons, public domain.
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still an adolescent, so to speak, and apparently had not yet reached
its maximum size!

One particular extant shark, the Greenland shark, Somniosus micro-
cephalus, is also very long-lived, with lifespans of 250-400 (and per-
haps 500) years. This longevity is generally thought to be due to a
very slow metabolism resulting from the cold waters in which it lives
(Nielsen et al. 2016, O’Conner 2017). The Greenland shark is also
one of the largest extant sharks and is thought to take 150 years to
reach maturity. Both its large size and stretched-out growth interval
are consistent with the trends noted in Section VB linking greater
longevity in extant animals to greater adult size and longer growth
periods.

However, cold temperatures seem inadequate to explain the apparent
great longevity of these fossil sharks. Evolutionists think the Cre-
taceous climate was warm, and some creationists (Whitcomb and
Morris 1991) have long suggested that the pre-Flood world was gen-
erally warmer than today’s world, with presumably warmer oceans.
Moreover, Cretaceous strata were deposited during the Flood, with
much warmer oceans due to intense volcanism (Oard 1990) and
rapid seafloor spreading (Baumgardner 1990). So both creationists
and evolutionists would agree that the oceans in which these sharks
swam were warm, albeit for different reasons. Moreover, evolution-
ists think megalodons lived in temperate-tropical waters (Shimada
2021), and creationists (at least those holding to a “high” Flood/post-
Flood boundary) would argue that Miocene strata were also deposit-
ed during the Flood. Hence Miocene oceans should have been warm,
as well. Yet despite living in temperate-to-warm waters, these fossil
sharks demonstrate characteristics indicative of extreme longevity.

D. What about dinosaurs?

Of course, one cannot help but wonder about the largest of all land
animals, the sauropod dinosaurs (Figure 12). Could their very large
sizes be clues of great longevity, as suggested by Clarey (2018) and
others? Paleontologists have used dinosaur osteo-histological data to
construct growth curves for sauropods, as well as for other dinosaurs.
However, as dinosaurs are extinct, ontogenetic growth curves for ex-
tant dinosaurs are rather difficult to come by! Hence, it is not possible

Figure 12. Since reptiles have (apparently) indeterminate growth, could the
large sizes of some sauropod dinosaurs be evidence of extreme longevity in
the pre-Flood animal kingdom? Image credit: Video capture from Uncov-
ering the Truth About Dinosaurs, Institute for Creation Research, Dallas,
Texas. Used with permission.

to make a direct comparison of pre-Flood and post-Flood dinosaur
growth rates and sizes.

However, given that large-mass animal kinds tend to live longer than
lower-mass animal kinds, one would expect pre-Flood sauropod di-
nosaurs to have very long life spans and slow growth rates. Howev-
er, most dinosaurian growth curves suggest that sauropod dinosaurs
grew very rapidly (Sander 2000), with a peak Apatosaurus growth
rate of 5,000 kg/year (Erickson et al. 2001). Such a high rate implies
that Apatosaurus would have been a full-grown adult in just 15 years,
contrary to expectations if its large size is indicative of slow growth
and great longevity. However, in an extensive survey Myhrvold
(2013) made astute criticisms of nearly a// such constructed dinosaur
growth curves, citing methodological and statistical fallacies or an
inability to replicate the results. The only sauropod dinosaur growth
curves he did not criticize were those of Woodward (2005) and Leh-
man and Woodward (2008), which implied much more modest peak
sauropod growth rates of 520 kg/year for the Apatosaurus and 1,000
kg/year for Alamosaurus. With these lower rates, an Apatosaurus
would need 70 years to reach maturity, as opposed to the 15 years es-
timated by Erickson et al. Alamosaurus would have needed 45 years
to reach full size. However, Myhrvold cautioned that, even in those
cases, the largest sauropod dinosaur was only 37% of its estimated
adult size. Hence, in the case of sauropod dinosaurs, firm conclusions
about total time to skeletal maturity and/or growth rate are probably
as of yet unwarranted.

VI. CONLUDING REMARKS

Living things are vastly more complicated than imagined by Dar-
win. Hence it makes perfect sense that optimization methods such as
Lagrange multipliers and impedance matching would be required to
understand them. Although the WBE theory is probably not the final
word in this area, it is a great starting point for those hoping to con-
struct a creation-based theory of biological design, and it or a similar
theory, such as that of Escala (2022), may help shed light on giantism
and longevity in the pre-Flood worlds.

This paper included some paleontological speculation. Paleontology
is outside my area of expertise, and I recognize my need for assistance
in this area. However, creationists do not yet have a robust defense
of the great longevity experienced by pre-Flood humans. Sadly, even
many “evangelical” seminary professors are openly doubting the Bi-
ble’s claims in this matter (Olson 2017, Olson ND, and discussion
in Smith 2022). The possibility that paleontological data could help
confirm that this longevity was shared by at least some pre-Flood an-
imals is exciting, and I felt an urgent need to present it here at least as
a possibility. For this reason, I appeal to creationist paleontologists,
biologists, and statisticians to begin an aggressive and rigorous study
of sclerochronological and paleo-osteo-histological data to see if a
strong case can be made that pre-Flood animals were indeed attain-
ing great ages compared to their extant counterparts.
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APPENDIX A: Optimization for Narrow Blood Vessels

These derivations are included as “guideposts” to other researchers,
as details of the derivations are not always clearly or succinctly ex-
plained in the literature. Appendices A through C primarily follow
the methodology of Savage et al. (2008), as they include details
omitted in the overview provided by WBE.

For a fluid with viscosity p the Hagen-Poiseuille formula gives the
hydrodynamic resistance R to laminar, steady fluid flow in a short
pipe of length / and radius 7. One may derive the Hagen-Poiseuille
expression by solving the Navier-Stokes equation (in cylindrical co-
ordinates 7, z, and ¢) for steady-state (no time dependence, and no
z-dependence of velocity upon position) laminar flow of an incom-
pressible fluid in a short, azimuthally symmetric pipe. The fluid un-
dergoes motion in only the z-direction and is subject to the boundary
condition that fluid velocity at the pipe wall (» = R) is zero. Solving
this equation in cylindrical coordinates yields an expression for Ap in
terms of current velocity w(r) in the z-direction. Averaging this over
the cross-sectional area of the pipe yields an expression for the vol-
ume current flow Q:

Ap =29 _ Hp

rt

(AT)

Physicists and electrical engineers will note the similarity between
Eq. (A1) and the equation AV = IR. Hence the expression for the
hydrodynamic resistance R is

_8ul
T oart

(A2)

For a hierarchical fluid distribution network with N + 1 levels of
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pipes, the total resistance of the network is the sum of the resistanc-
es of each level of the network, just as the equivalent resistance of
electrical resistors in series is equal to the sum of the individual re-
sistances:

Ryetwork = 211g=0 Rievel k (A3)

Each level has N, = n* identical pipes of length [, and radius 7,.
Hence, each level of the network has n* hydrodynamic resistances in
parallel with one another. Eq. (A3) becomes

N Rk_z

Rpetwork = 2112]:0 Rievel k = Xk=0 Nk (A4)

nkrrr

If a total current QO flows through the network, the total power dis-
sipated is

Pioss = Qanetwork (AS)

The method of Lagrange multipliers (Thomas and Finney 1988) is
used to find the parameters that minimize this power loss, assuming
that the organism’s mass M, blood volume V,, and products
N, [} <V are known quantities. The method requires the construction
of an ‘auxiliary function’ F’ that is a function of the variables al-
lowed to vary in order to minimize the power loss, i.e., 7,,[,, and n, as

9 k’
well as the undetermined multipliers A,, A, and the A :

N
F' 0 ds 1, 2y Dy 2oy ooy ) = By (3 e 0, M)+ AV, (1 Ly 1 M) + 2 M+ Y AN,
k=0

+lZn (zrll)+ 2, M+Z/’Ln’cl2 (A6)

Note that the volume filling constraint has been applied N + 1 times,
because it must hold for all N+ 1 levels of the network. The equation
for the volume of a cylinder was used to obtain an expression for the
total volume of blood V, within the network. As noted in the Supple-
mentary Materials section of Savage et al (2008), this expression
may be simplified considerably since p, , and QfJ are constants:

i+ Ap D= nF (L) + Ay M + TRoo 1en* 3
(A7)

An optimizing expression for 7, is obtained by taking the partial de-
rivatives of F with respect to 7, and setting that partial derivative
equal to 0:

F (e b Ap, Ay Ao, A, An) = Do

nkr

a -4l

F
a0 K=o k5+/1b2 _onf@rnd)  (A8)

Since A, must be independent of k, one may be tempted to solve for
A, directly:

N Al
z:k:Onkri

TR onk(2mrily)

Ay = (A9)

But it is much easier to observe that Eq. (A8) is also satisfied if

_ 2
b~ w(n2krg)

(A10)

and one then imposes the constraint that A, be independent of k:

2k,.6

— 2(k+1),.6
n?rg = n20H g,

(All)

This implies that

—rk+1 = n_% = ﬂ = ﬂ
Tr k >

(A12)
where we have introduced the symbol 3. to show that this constraint
applies for narrow blood vessels, denoted by k values greater than
some particular k = k. Taking the partial derivative of F with respect
to [, and setting the derivative equal to 0 leads to the “volume filling”
requirement obtained in Section II1B:

b, e _
L ¢ A
k

(A13)
One may then show that the first and fourth terms (which are them-
selves sums) on the right-hand-side of Eq. (A7) add to zero. This
results in a simplified expression for F:

F =2V, + AyM (A14)

Since F does not depend on mass M, differentiating Eq. (A14) with
respect to M yields

a
0=1p 5L+ Ay (A15)

Integrating Eq. (A15) and imposing the requirement that V, = 0
when M = 0 implies that

Vy x M (A16)

Eq. (A16) plays an important role in deriving Kleiber’s Law, as
shown in Appendix C.

APPENDIX B: OPTIMIZATION FOR WIDE BLOOD
VESSELS

The smaller surface area to volume ratio found in thicker blood ves-
sels implies that dissipation due to wave reflection at node junctions
is a much greater source of power loss than friction. This power loss
may (in theory) be completely eliminated via the process of imped-
ance matching. This discussion follows the methodology of Savage
et al. (2008) and Caro et al. (2012).

Pressure in the arterial system consists of both steady-state and os-
cillatory components (Caro et al. 2012). Since the steady-state com-
ponents do not change, it is sufficient to consider just the oscillatory
incident, reflected, and transmitted pressure and current waveforms:
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i(kx—wt) N (kK x—ot)
pe” Qe™

i(—Kxx—ot) N i(—rx—at)
pe Qe

be

(BI)
i(Kyx—ct) Q-[ ei(sz—a)t)

Note that the additional minus sign in the expressions in the second
row of Eq. (B1) take into account the fact that the reflected waves
propagate in the direction opposite to the incident waves. Also, the
incident and reflected wave numbers are both denoted by «,, since
wavenumber is a property of the artery and not the wave itself. Here,
the currrent amplitudes are positive real numbers, but the pressure
amplitudes are complex, with the complex parts of each current in-
corporated into each (complex) pressure amplitude. This allows for
possible phase differences between waveforms. At the node junction
(x =0) and at all times ¢, the sum of the incident and reflected waves
must equal that of the transmitted wave:

pi +Pr ="t (B2)

If this were not the case, then any existing pressure difference would
quickly drive blood toward the region of lower pressure, removing
the pressure difference.

Impedance Z is defined as the ratio of applied oscillatory pressure
to resulting oscillatory fluid flow. It is a property of the blood vessel
and not the wave per se. Hence, the expressions relating the incident
and reflected pressure waveforms to their corresponding currents
will both be expressed in terms of the same impedance Z,_and the
transmitted wave will be expressed in terms of the impedance Z, ..
The pressure and current amplitudes are related by

pi = ZiQ; (B3)
pr = ZyQr
Pt = Zp4+10¢

Since the pressure amplitudes may generally be complex, the imped-
ances may be complex, as well. At all times, the net inbound current
at the junction must equal the outbound current, so

Qi — Qr =n0; (B4)

Substituting the expressions from Eq. (B3) into Eq. (B4) yields

b P _
Zk Zk

" P
Zk+1

(B3)

Adding together and then subtracting Eqs. (B2) and (B5) results in
an expression for the reflected pressure amplitude in terms of the
incident pressure amplitude:

=Zk+1—nZk .
Zpp+nZp O

Pr (B6)

To minimize power losses, the reflected amplitude should be zero.
This condition is met if

nZk = Zk+1 (B7)

For the special case of inviscid (negligible viscosity) fluid flow, the
hydrodynamic impedance is (Caro et al. 2012):

CopP
e

k= (B8)

where p is blood density and ¢, is the Korteweg-Moens velocity
(Moens 1878; Korteweg 1878), the velocity at which a blood pres-
sure pulse propagates through the arterial system when viscosity is
negligible. Eqs. (B7) and (B8) imply that, for large blood vessels,
impedance matching is achieved if

1

T 2
e
k

(B9)

where we have introduced the symbol [ to show that this constraint
applies for wide blood vessels, denoted by k values less than some
particular k = k.

Appendix C: Derivation of Kleiber’s Law

Obtaining a general expression for blood vessels of intermediate
length is extraordinarily difficult (see Shirazi 1972), and we omit
this discussion here. However, from the results of the previous two
appendices, it is apparent that efficiency of the cardiovascular sys-
tem is increased by using the volume-filling condition expressed in
Eq. (A13), as well as Eq. (A12) for narrow blood vessels and Eq.
(B9) for wide blood vessels, as shown in Figure 6. Here we derive
Kleiber’s Law, as illustrated by Savage et al. (2008). The total vol-
ume of fluid (here assumed to be blood) in the organism is equal to
the total volume of the network:

Vy = 21,;;0 Ny (nrkzlk) = 21,2’:0 nk (nrkzlk) (C1)

This sum may be partitioned into two parts, where k = k marks the
transition between wide and narrow blood vessels:

v, = 2%:0 nk(nrkzlk) + Zlig=k+1 nk(nrkzlk) (C2)

Since the volume-filling constraint holds for all values of k, we have

L, =y*l, forallk, (C3)
and our generalized expression for the radius of each vessel is
k fork <k
Ty = (kﬂ<k) To . orKk = - (C4)
B>) T (B 1o fork >k
where we have defined
L —
pB.=n? fork<k (C5)
B = N
B =n3 fork>k

>
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Egs. (C3) and (C4) imply that the volume of each capillary is

I/cap = ﬁr]\%lN
2(N-k) 2k
= 72'7”0210 (,B>) (,B<) 7/N (C6)
,B 2k
=713 1y (B. )ZN( j Y
p.
The number of capillaries is
Nigy =0 (C7)

Inserting our expressions for ., S, y and N, into Eq. (C6) gives

_ (mrglo)
Vi = 25}
Negpn3

(C8)

By making use of the formula for a geometric series (Spiegel 1994),
the first sum in Eq. (C2) becomes

k

S () = 3 o2 ()

k=0 k=0

= (w131, )Z(n Py =V, N,

(€9)

1?/3 1— (n—l/S )1€+1
_ n71/3

By defining N = N — k, the second expression in Eq. (C2) becomes

> (21, B DBy [/;—J )Z ) {ﬂ r%)Z 1*
s
[ﬂ_] mr )N k) (C10)
N, N

mp

Combining the expressions for these two sums and some algebra
gives us the blood volume:

N
-1, 5 Cl1
Vy = VeapNeap ““”l—+N (C11)
n3-1

Remember that, according the first assumption of the WBE theory,
the volume of a capillary Vo is the same regardless of the mass of
the organism. Hence, it is a mass-independent quantity. The same
is true for the branching ratio n and the number N. Thus the only
mass-dependent variable on the right-hand side of Eq. (C11) is N,

Defining the mass-independent constants

(1-N
Veapnt 3

= 1
and C; = Veap <N -

¢y = ) (C12)

n3-1 n3-1

gives us
4 4 1
3 — 3 G 3 C13
V,=GN;,+CN,, =CN;, | 1+ N, (C13)

In Appendix A it was shown that body mass M is proportional to
blood volume V. Therefore

(C14)

cap cap

M = AV, = AC,N} (1+C‘N3]

Intuitively, we expect the total basal metabolic rate B to equal the sum
of the metabolic rates of the individual service volumes. Since there
are Nmp such service volumes, B « Nmp, or equivalently, Nmp « B. So
we have

4 1
M=A4B|1+AB>
(C15)

As the mass M becomes infinite, an infinite number of capillaries
N, is needed to provide blood to the service volumes. Hence B be-
comes infinite, as well. Thus, in the limit as M — oo, the second term
in parentheses becomes vanishingly small, and we obtain Kleiber’s
Law:

3
B o M3 (C16)

APPENDIX D: Derivation of the Sigmoid Growth Curve

The WBE ontogenetic growth model partitions metabolic energy use
between the energy needed to maintain existing tissue and the energy
needed to produce new tissue. The total basal metabolic rate B is the
sum of the individual metabolic rates of the body cells, plus the rate
at which energy is used to form new cells:

B = ZC[NB + B, ch]

(D1)

The summation is over the different tissue types within the body. For
each tissue type, there are N cells, each having a cellular metabolic
rate of B, with £ the energy needed to form a new cell for that tissue
type. To simplify the analysis, we will treat all N, of the body’s cells
as having an average cellular metabolic rate B, with £ being the
energy required to create an average body cell:

dNC

B = N.B.+E, (D2)
The organism’s total body mass m is
m = m.N, (D3)

Differentiating both sides of Eq. (D3) with respect to time yields

dm dN;

—= D4
ar . Mg (D4)
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Rearranging Eq. (D2) yields

dN;

1
=—(B — D5
= 2B - NeBo) (03)
Inserting Eq. (D5) into Eq. (D4) yields:

D6
d_mzﬂ(B_NB)zch_m_BC (b6)
dt E. cme E¢ Ec

Inserting Kleiber’s Law, Eq. (2), into Eq. (D6) gives
dm _ e p s — 1B (D7)
dat ~ E. E;
By defining the taxon-specific parameters a and b as
q=5me =B (D8)
E. E,
Eq. (D7) simplifies to
3
M _ ams — bm (DY)
dt

Growth ceases when the derivative in Eq. (D9) equals 0. This occurs
when m = M, the mass at maturity, implying that

ayt Bgm 4
= (=) = (== D10
m=() =) (P10
Eq. (D9) thus becomes
1
am _ 2 m\s (D11)
2 — a1 - (2]
Separating variables yields
1 -1
n 3
4 _2
I 1—[ﬁ) m 4dm=aJ-dt (D12)
M
Defining
1
=1 (T D13
u=1 (M) (D13)

transforms Eq. (D12) into
1
—AM3 C;_u — afdt, (D14)

Integrating and applying the boundary condition that
m(t =0) =m, yields the sigmoid mass-versus-age growth curve:

Y %1k,
(m) () )
M M

The age at maturity t ~can be approximated by setting
m=(1—¢)M wheree K 1:
1
> (D16)

o~ (2 (21 - (2

(D15)

Since m, << M our expression for ¢ simplifies further to

in = (2 n 2),

(D17)

which implies that

1
ty & M3, (D18)
This result is consistent with numerous observations (Lindstedt 1981,

Calder 1984, Schmidt-Nielsen 1986) that biological timescales (such
as lifespan, blood circulation time, etc.) are generally proportional to

M Ef Hence the WBE ontogenetic theory may provide a theoretical
link to empirical observations that greater ages at maturity are posi-
tively correlated with longer lifespans and adult body masses, and a
more fully-developed theory might help explain the great longevity
of the pre-Flood patriarchs.
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